SIAM J. NUMER. ANAL . . .
. 1987 Society for Industrial and i
Vol. 24, No. 3, June 1987 © y for Industrial and Applied Mathcmanc;

EXPLICIT RUNGE-KUTTA (-NYSTROM) METHODS WITH REDUCED
PHASE ERRORS FOR COMPUTING
OSCILLATING SOLUTIONS*

P. J. VAN DER HOUWENt AND B. P. SOMMEIJER?}

Abstract. We construct explicit Runge-Kutta (-Nystrdm) methods for the integration of first (and
second) order differential equations having an oscillatory solution. Special attention is paid to the phase
errors (or dispersion) of the dominant components in the numerical oscillations when these methods are
applied to a linear, homogeneous test model. RK(N) methods are constructed which are dispersive of orders
up to 10, whereas the (algebraic) order of accuracy is only 2 or 3. Application of these methods to equations
describing free and weakly forced oscillations and to semidiscretized hyperbolic equations reveals that the
phase errors can significantly be reduced.
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1. Introduction. We shall discuss the construction of special Runge-Kutta
(-Nystrom) methods (RK(N) methods) for integrating systems of ODEs of the form

dk
(L.1) =6y, k=12

The methods are designed in such a way that for linear systems with f(1, y) = Ay + g (1),
where A is skew symmetric if k =1 and symmetric if k =2, the phase error of the free
oscillations in the numerical solution is small. Methods possessing this property are
suitable for long interval integration of equations describing free oscillations because
the integration step can be chosen much larger than the step size conventional RK(N)
methods need for the accurate representation of these components (see the numerical
results for Problem 4.3). A second class of problems which can efficiently be integrated
by these methods, have solutions that consist of free oscillations of high frequency and
Jorced oscillations of low frequency (see Problem 4.4). Since the step size needs only to
be tuned to the forced oscillation, the method can again be applied with relatively
large steps. In all other cases, the efficiency of the methods depends on the magnitude
of the phase error due to the forced oscillations. If these contributions are small, for
example, if |g(1)| « |Ay(1)|, then the methods derived in this paper are still more efficient
than conventional RK(N) methods (see Problem 4.5). Because the classes of problems
described above are usually not stiff, we shall confine our considerations to explicit
methods (although the process of reducing the phase error of the method could be
extended to implicit RK(N) methods). Finally, we mention another class of problems
for which these explicit methods may prove to be suitable, namely the class of
semidiscrete hyperbolic equations with smooth solutions. The introduction of vector
computers stimulated a reconsideration of explicit time-stepping methods for solving
hyperbolic equations (see, e.g., Jameson [14]) because on this new generation of
computers, explicit methods can be implemented with great efficiency, partly com-
pensating for the limited step size inherent to explicit methods.
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With this second application in mind, we have constructed the RK(N) methods
in such a way that a minimum of intermediate storage is required, so that large systems
of semi-discrete hyperbolic equations can be handled. ‘

Most papers devoted to the phase lag analysis of numerical methods start with
the inhomogeneous test equation

k
(1.2) %t—k}-]=(iw)ky+ceiwp', w, w,, CER.

o

The exact solution of this equation is given by

iw t

() — (i) &

where ¢. and c_ are constants with ¢_ =0 for k=1. By applying a numerical method
1o the test equation (1.2) and assuming that the characteristic polynomial characterizing
the method has d distinct zeros {4;} (so-called amplification factors), we find for the
numerical approximation at t, = nh an expression of the form

{1.3) y(1)=cre® +c_e '+

&(d,(wh))"+ ch*Q(wh, w,h) e™ ",
1

(1.4) Vo=

I s

J

where the constants ¢ are determined by the initial conditions, and where the functions
d, and () are independent of n and are completely determined by the numerical method
applied. The functions (4;)" and Q) are discrete analogues of the functions exp (*iwt)
and_Q:= 1/ {(iwph)" —(iowh)*]. Accordingly, the functions ch*Q exp (inw,h) and
ch* Q) exp (inw,h) will be called the inhomogeneous solution components of the exact
and of the numerical solution, respectively.

For example, if Euler’s method is applied to (1.2) with k=1, we obtain

1
T (e —1) = (iwh)’

In the phase analysis of the homogeneous components of the exact solution (1.3)
and the numerical solution (1.4), one compares the phase(s) (or argument(s)) of
exp (+iwh) with the phase(s) of the principal characteristic root(s) occurring in the set
{a;}. Likewise, the phase analysis of inhomogeneous solution components is based on
tt}e phases of the functions Q and Q. In this connection it should be observed that the
“inhomogeneous” phase error (due to differing phases of () and Q) is constant in time,
whcr?as the “homogeneous” phase errors are time-dependent and must accumulate
as n increases,

.In the case of first-order equations (k=1), a complete phase analysis has been
carried out by Brusa and Nigro [2] for a special third-order implicit one-step method,
and for second-order equations (k =2), a phase-lag analysis may be found in Gladwell
and:l"homas [8] for linear multistep methods and in Thomas [20] for certain hybrid
families related to the multistep Runge-Kutta methods of Cash [3] and Chawla [4].
The papers mentioned above treat both the homogeneous and inhomogeneous com-
;?onents in the phase error. In Strehmel [19] and Strehmel and Weiner [18]
;:homogénecfus phas:: errors are investigated for Rosenbrock-type methods (adaptivé
anflg?— utta- Nystrém methofls). This analysis is extended to explicit Runge-Kutta—
,S ys;lrom fnethod§ and to predictor-corrector methods in van der Houwen, Sommeijer

fre mel and 'Wel.ner [13]; an analysis of the homogeneous phase errors for Numerovj
type methods is given by Chawla et al. [5], [6], for multiderivative methods by Twizell

d=1, d"=[1+iwh]", Q
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[22] and Twizell and Khaliq [21] and for predictor-corrector-type methods in van der
Houwen and Sommeijer [12].

Since we shall confine our considerations to homogeneous phase errors we will

use the test equation
k

(1.5) i%= (iw)*y, w real.

dt
By comparing the exact and numerical solution for this equation, and by requiring
that these solutions are in phase with maximal possible order in the step size h, we
derive the so-called dispersion relations, from which the Runge-Kutta (-Nystrom)
methods can be constructed. Methods of (algebraic) order 2 and 3, and of dispersion
order up to 10 will be derived. We emphasize that, whereas the algebraic order applies
to ODEs of the general form (1.1), the order of dispersion only applies to equations
of the homogeneous form: f(t, y) = Ay, where A has eigenvalues (iw)*, o real. However,
as outlined above, in the case of inhomogeneous problems, an increased order of
(homogeneous) dispersion may improve the overall accuracy considerably, although
numerical results will show the algebraic order and not the dispersion order.

In addition to RK(N) methods with fixed coefficients, we shall shortly discuss a
simple modification in which the coefficients can be tuned to exploit possible extra
information available on the dominant frequencies in the exact solution. These modified
methods are related to the oscillatory RK methods proposed by Bettis [1], but they
have the advantage of being less sensitive to errors in the estimation of the dominant
frequencies (see § 2.5 and Problem 4.3).

Finally, a few comments on the actual implementation of the RK(N) methods.
The implementation of such a method itself is extremely simple, because of its explicit
structure. However, to run these methods efficiently on a computer, a step size strategy
is required, not only to monitor the (local) accuracy of the numerical solution, but
also to avoid the development of instabilities due to step sizes violating the stability
condition inherent to explicit methods (when a fixed step implementation is used, an
estimate of the spectral radius of the Jacobian matrix 3f/dy of (1.1) should be provided
in order to satisfy the stability condition h < 8/spectral radius, where 8 is the imaginary
stability boundary (see § 3)). Usually, step size control for RK(N) methods is based
on embedded pairs of methods, providing both a numerical solution and a reference
solution. As the referees of this paper observed, the order properties of the main
formula and of the reference formula would have to be carefully matched to obtain a
good local error estimate. The systematic construction of such reference formulas for
our RK(N) methods is not discussed in this paper. However, in § 3.1 an illustration
of the construction of a reference formula is given.

2. Dispersion and dissipation in Runge—Kutta (~Nystrom) methods.
2.1. The order of dispersion and dissipation. For first-order equations (k=1 in
(1.1)) we write the m-stage, explicit Runge-Kutta method in the form

y("O):yn—l’
. =1 .
@1 Y =yuath T NSt by, j=1,--,m,
I=0
Vai=ym.

Here, wo=0 and y,, y,-, denote approximations to y(t,) and y(t, — h), respectively.
Application of (2.1) to (1.5) with k=1 yields the numercial solution

(2.2) Yo =a"yy, d=A,(v)+ivB,(v?), v=owh,
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where A,, and B,, are polynomials in »*, completely defined by the Runge-Kutta

parameters A;;; d=d(v) will be called the amplification factor. A comparison of (2.2)

with the solution of (1.5), i.e. y(#,) =y, exp (inv), leads us to the following definition:
DEFINITION 2.1. In the Runge-Kutta method (2.1) the quantities

o(v)=v-arg[d(»)], a(v)=1-|d(»)|

are respectively called the dispersion (or phase error or phase lag) and the amplification
error. If ¢(v) = O(»*™") and a(v)= O(»""") then the method is said to be dispersive
of order q and dissipative of order r. O

It follows from (2.2) that

B,.(v%)
A ()

Next we consider the m-stage, explicit Runge-Kutta-Nystrém method for (1.1)
with k=2; we write this method in the form

(2.3) ¢(v)=v—arctan(v ), a(v)=1-vA% () + B3 (7).

0
ys'l):.))n——l;

4 =1
(2'4) y(n]) =yn——l +l“'jh}}n—l+ h2 IZ() )\j,Lf(tn_1+;U/1h, y(nl))a .] = 1: T, ma

m—1

W=y Gn= et Aot b, ),

where wo=0and u,, = 1. For the test equation (1.2) with k =2 we obtain the numerical
solution

Yn _ n Yo — Am(pz) Bm(vz) —
s (o )ome(m) m=(320s mron) v==on

where A,,, A%, B,, and B}, are again polynomials in »*, determined by the parameters
in (2.4). The eigenvalues of M will be called the amplification factors of the Runge-
Kutta-Nystrom method and are denoted by a., and a_; the corresponding eigenvectors
are given by

A%(v?)
_ T .— m
e.=(1,e.), ei'—m.

In terms of 4. and e. the numerical solution y, is given by

_&+Yo— hy,

! ~ ~ n d ~ n -~ e_ —h‘ -~
(2.5 Vo=@ HE(E), &= RE g
e,—e_ e.—e_

We compare this discrete solution with the continuous solution

i ., 1 -i
(2.6) y(t)=ci(e”)"+c(e™)",  ca=zyoE—Jo.
2 2w
Assuming that the amplification factors d. are complex conjugate we may write
éo=ld eV,  d.=|d|e*”
and similarly
c.=lc| e, a.=e*",

On substitution into (2.5") and (2.6) we find
(2.5" Yo =2|¢| |d|" cos (§ +nb),
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(2.6 y(t,) =2|c| cos (¥ +nv).

These expressions lead us to the following definition.
DerFINITION 2.2. In the Runge-Kutta-Nystrom method (2.4) the quantities

b=y =g, S(»)=v=5 ay=|c|-|d, a(¥)=1-d]

are respectively called: initial dispersion, ( propagated) dispersion, initial amplification
error and ( propagated) amplification error. O

The initial dispersion and the initial amplification error are introduced by the
differences ¢. — ¢, determined by the initial values y, and y,. If these differences are
O(»°) then the initial dispersion and initial amplification error are both O(z*) as » > 0.
These errors are not propagated in the numerical computations. In the following, p,
g, r, s denote the orders of accuracy, of dispersion, of amplification error, and of initial
dispersion, respectively.

The errors ¢(v) and a(v) accumulate in the numerical process and are therefore
a cause of inaccuracies if many integration steps are performed. (This assertion also
applies to the errors ¢(v) and a(v) defined in Definition 2.1.) It follows from (2.5) that

2
.7 ¢ (v) = v —arc cos (-S—(z-)—), a(v)=1-+P(1?),
WP

where
S(v*) = A, (v)+BE(vY),
P(v*) = A,,(v*)BE(v?) - A%(v%) B, (v7).

In this paper we will concentrate on increasing the order of dispersion g (defined
by ¢(v)= O(v?™")). In the case of second-order equations we will maximize g under
the additional requirement of zero dissipation (i.e. P(¥*)=1 in (2.7)).

2.2. Runge-Kutta methods. In the following we will write
(2.8) An(2)=1=Byz+B2* -+,  B(z)=1-PBsz+Bsz® -+,

where B; = 0 for j > m. We want to express the conditions for dispersion of order g in
terms of the parameters B;, j=2, -+, m (in the Appendix, we give a few of these
Bj-coefficients explicitly expressed in terms of the parameters of the RK scheme (2.1)).

THEOREM 2.1. The Runge- Kutta method is dispersive of order q =24, if the par-
ameters 3;, j =2, - - -, m, satisfy the relations

(2-9) Y2 — 72j—2:62+ ’)’2j~4,34" st (“l)j')’oﬁzj + (_l)jHszH =0
forj=1,--- qo—1; here the coefficients y,; are defined by the Taylor expansion

fe o)
tan(z)=z 3, y»z”,

1=0
and
B;=0 forj>m.
Proof. From the definition of ¢(») it follows that, if
v i:xz; =tan (v)—cv?"', cboundedasv—0,
then

#(v)=v—arctan [tan (v) — cv®" '] = cv? " + O(»77?),
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so that the method is dispersive of order g. Substitution of (2.8) and expanding tan (v)
in a Taylor series leads to (2.9). 0

COROLLARY 2.1. The maximal attainable order of dispersion of an m-stage, pth
order, explicit Runge-Kutta method is g=2(m —p+ [(p+1)/2]); here, | x| denotes the
integer part of x.

Proof. From (2.2) and (2.8) it follows that a pth order method necessarily satisfies
the order conditions

1
ﬁ,
Hence, an m-stage, pth order method has m — p free parameters B;. If these parameters
satisfy (2.9), the order of dispersion is increased by 2(m —p). It can be shown that
any pth order method has already an order of dispersion 2|(p+ 1)/2], whatever the
parameters B+, * *, Bm are. Thus, the total order of dispersion can be increased to
2|(p+1)/2} +2(m—p). This completes the proof of Corollary 2.1. [

In Table 2.1a the dispersion relations (2.9) are listed for a few values of p and g;
in Table 2.1b the corresponding error constants are given.

(2.10) B;= J=2,--,p

2.3. Runge-Kutta—Nystrom methods with zero dissipation. We shall say that a
Runge-Kutta-Nystrdm method has zero dissipation at a point v if a(v) =0 where a(v)

TABLE 2.1a
Dispersion relations in terms of the parameters B;.

Order qz

4 B,-B3=1/3

6 By—3Bs+3Bs=2/5

8 2B8,~5B4+158e—158,=17/21
0

2

10 17B8,-428,+105B5— 31583 +3158,=62/9

12 62B,~—153B,+378Bs—945B85+2835(B,o— B11) = 1382/55
p=23 4 B,=1/2,83=1/6

6 Bi—Bs=1/30

8 B.—3Bs+3B;=4/105

10 2B,—5B6+ 1585~ 158,=29/378

12 17B,—42Bs+105B3—315B,,+3158,, = 323/495

p=4,5 6 B,=1/2,By=1/6,B,=1/24,Bs=1/120
8 Be—B,=1/840
10 Be—3Ba+3B,=1/756
12 68— 15B5+458,0—458,, = 221/27720

TABLE 2.1b
Error constants c in the dispersion ¢(v)=cv?™1+ O(v7+3).

q c

4 —Bs+Bs—3B,+2/15

6 Br—BstiBi—2B,/15+17/315

8 =Byt Bs—3Bs+2B4/15-17B,/315+62/2835

10 By1—Biot3Bs—2B6/15+17B,4/315-628,/2835+1382/155925
12 =Bi3+Bi=3Bro+ 2B/ 15~ 17B4/315+62B,/2835 — 13828,/ 155925 + 21844 /6081075
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is defined in Definition 2.2; thus, the numerical solution of our test equation, specified
in (2.5"), assumes the form y, = 2|¢| cos (¢ + n?). This means that, except for some
initial amplification due to ||, there is no dissipation (negative or positive) during the
numerical calculation of the solution of {(1.5), k =2}. The interval 0= »*= 8* where
|a|=|a(v)|=1and d.(v)# d_(v), is called the interval of periodicity or the interval of
zero dissipation.

A necessary condition for a nonempty interval of periodicity is P(z) =1 (cf. (2.7)).
In this section we consider methods with P(z)=1, thereby simplifying the analysis
considerably.

Let us write the polynomial S(z), introduced in (2.7), in the form

(2.11) S(z)=2—0,z+0y2°—- - -, 0;,=0 forj>m.
J

The analogue of Theorem 2.1 becomes the following.
THEOREM 2.2. Let the Runge- Kutta- Nystrém method be such that

(2.12) P(z)= An(2)Bh(2)— A%(2)B.(2)=1.
T'hen the method is dispersive of order q = 2q, if the parameters o are given by

2
@)’

Proof. From (2.11) and (2.13) it follows that
S(v*) =2cos (v)+ O(p*%*?),

(2.13) o; J=1,"-,q.

Hence,

2cos (v)+ O(v""oﬂ))
2V P(1?)

=y —arccos (cos (v)+O(»*™)=0(»**"). O

¢d(v)=v— arc cos(

Since S(z) is at most of degree m, it follows from Theorem 2.2 that the maximal
attainable order of dispersion is ¢ =2m. We observe that the consistency conditions
will not conflict with the dispersion relations (2.13). In fact, part of the consistency
conditions coincides with the dispersion relations (cf. (2.9)).

2.4. Dissipative Runge-Kutta-Nystrom methods. By dropping the condition of
periodicity intervals, the order of dispersion can be increased. Writing

(2.14) P(2)=1—mz+mz—mz’+-- -, m=0 forj>m

and proceeding as in § 2.2, we arrive at the dispersion relations listed in Table 2.2a
(the expressions for a few o; and m; coefficients in terms of the parameters of the RKN
scheme, can be found in the Appendix). We observe that in a pth order method the
amplification factors d. satisfy the relation

a,=exp (xiv)+ O(»**")
soO that
S(»*)=2cos (v)+0(*™),  P(*)=1+0("");

this has been used in the dispersion relations of Table 2.2a. In Table 2.2b we have
listed the corresponding error constants.
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TABLE 2.22
Dispersion relations in terms of the parameters o; and ;.

Order qz
p=1 2 o-m=1
4 oitdo,—4m —4m=4/3
6 60,0yt 1205 —4m — 127, — 12w, =8/15
8 4503+900,03+ 1800, ~ 84, — 607, — 1807, — 180w, =4/7
10 450,05 +450,0,+9005— 2,/ — 47, — 3013 =907, — 9075 = 4/315
12 31502+ 126004+ 6300, 05 +6300,0,— 8, /45 — 41, — 567,

—4207, — 126075 — 12607 = 8/ 1485

o =1,7=0

o, my=1/12

0, +203=2m,—2m; =4/45

303+ 605+120,—4my— 1275~ 127, =4/105

450,05 +450,+ 9005 — 47, — 307, — 907, — 9075 = 4/315
31502+ 126004+ 63005+ 6300,0, — 41, — 56773 — 4207,
—126075 — 12607, =8/ 1485

p=23

RO 0N BN

—

oy=1,0,=1/12, m=7,=0

oy — 3 =1/360

03420, — 23— 27, = 29/10080

50,4600, + 12005 — 407, — 1207, — 12075 = 16/945

63003+ 25200+ 126005+ 10507, — 112775 — 84077, — 2520775 — 2520775 = 16/ 1485

N O 0N

—

TABLE 2.2b
Error constants c in the dispersion ¢(v)=cvi*'+ O(»973).

[o}+40,— 47, —4m,~4/3]/8

-[60y0y+ 1203 — 47, ~ 127, — 127, — 8/15]/24

[4503+900, 05 + 1800, — 877, ~ 607, — 180, — 1807, —4/7]/360

—[450‘;0’; +450,0,+9005 -2, /7 — 47y~ 307, — 907, — 9075 —4/315]/180
[31503+ 12600 + 630005+ 630030, — 87, /45— 47, — 56773

—4207, - 126075 — 12607, —8/1485]/2520

(=TI~ I N S

—

2.5. Reduction of phase errors of known frequencies. Suppose that it is known in
advance that Fourier components exp (iot) with w € [w, @] are dominating in the exact
solution. Then, it follows from Definition 2.1 that we can reduce the corresponding
pha§e errors in the numerical solution by minimizing the dispersion function #(v) on
the interval [, #]:=[wh, @h]. If ¢(v) were a polynomial, then this minimax problem
could be solved by resorting to the celebrated Chebyshev theorem: “Of all monic
polynomials of degree m on the interval [z, 7], the shifted and (scaled) Chebyshev
polynomial T,,(x) has the smallest maximum norm.” Since ¢ (v)/ v is an even function,
this theorem suggests the identification of ¢(v)/v with a Chebyshev polynomial in >
shifted to the interval [, 7]. Such an identification is accomplished by assigning to
@ () the same zeros as this shifted Chebyshev polynomial possesses, i.e. the zeros

1,1 1 2i—1 1/2
2.15 g | SR 2 (522 J )
(2.15) z [21/ +sy +2(V y)cos(zq0 77)] . J=1,-, g,
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where qo is the number of free parameters in ¢(»). We now assume that the location
of the zeros of ¢(v) at z; is also an appropriate choice in the case where ¢(v) is given
by the nonpolynomial expression specified in Definition 2.1. This assumption leads us
to the system of equations [11]:

(2.16) #(z)=0, j=1,""-,q,.

For the Runge-Kutta methods we obtain a linear system for the free parameters

ﬂp+17 Y Bm:
(2.17)  z+zjtan (z))B,—z}Bs— 2} tan (z)Bs+ 2385+ - - =tan (z), j=1,+-,q.

For the Runge-Kutta- Nystrom methods a nonlinear system for the free o; and r;
is obtained:

6
[2-0,zi+02z] —03z5+- - -]

(2.18) :
=2c0s (ZWN1-mz+mzi—mzS+- -,  j=1,---,q,.

Here, we have 0, =1, 7, =0 for p=2 and 0,=1/12, 7,=0 for p 2 4, etc. If we choose
P(z)=1, i.e., m;=0, we have a linear system for the free o;.

In cases where it is known in advance that given frequencies w;, w,, -+ - are
dominating in the exact solution, we can directly put z; = w;h. The resulting method
integrates the corresponding oscillations exactly and is, when only one frequency w,
is involved, identical to the oscillatory RK methods proposed by Bettis [1]. This
approach can be compared with an analogous technique proposed by Gautschi {7] to
increase the so-called trigonometric order of linear multistep methods. A disadvantage
of both the Gautschi and Bettis methods is the sensitivity to an inaccurate estimate of
the frequencies w; (compare the discussion in Neta and Ford [15] and in van der
Houwen and Sommeijer [11]).

Finally, we remark that for z;>0,j=1, - - -, g, the solution of the systems (2.17)
and (2.18) converge to the values given in the Tables 2.1a and 2.2a, respectively.

3. Construction of the numerical methods. In this section the parameters Ay, y;
and Ajoccurring in (2.1) and (2.4) will be determined taking into account the consistency
conditions and the dispersion relations listed in Table 2.1a and Table 2.2a.

3.1. Runge-Kutta methods. The various examples presented in this subsection will
be given by means of the generating Butcher array

m| L

S e L )i A= ()T

(3.1)

In the examples we give the order p, the dispersion order g, with its error constant c,
and the order of dissipation r. Furthermore, we compute the imaginary stability interval
(0, B), i.e., the interval where |a(v)|<1.

We have restricted our considerations to methods with m =6 and p=2, 3, 4. For
p=4 and g > 4 the methods derived turned out to be unstable (8 = 0) and are therefore
omitted.
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Example 3.1. A family of second order methods. In [9, p. 114] it was shown that
the method generated by

Bm/Bm—l Bm/pm—l
ﬂm—l/ﬂm—2 0 ﬁm—]/ﬁm—z

(32) B/ Bs ' Bl B
2B; 0 e 0 2B;
1/2 0 e o 0 1/2
0 cee 0 0 0 1

is second order accurate for all values of B3, B4, -, Bm- Solving the dispersion
relations in Table 2.1a for p=2 and m =4, 5 and 6 yields the methods

1/5]1/5 p=2, q=6, r=3,
/3] 0 1/3 c=-1/630,
(3.3) ~
1210 0 1/2 (0, B) = (0,2.66),
lo o o 1
1/8 | 1/8
8/35| 0 8/35 p=2, q=8, r=3,
(34 1310 0 1/3 c=—1/28350,
: 1210 0 0 1/2 (0, B)=~(0,3.38),
0 0 o0 0 1
1/12 | 1/12
4/25| 0 4/25 p=2, q=10, r=3,
5/21] 0 0 5/21 c=—1/2182950,
(3.5) 13| 0 0 0 1/3 (0, B) = (0, 3.99).
1/2 | 0 0 0 0 1/2
0 0 0 0 o0 1

These methods are easily implemented and require only a few arrays for storage.
Notice the relatively large (imaginary) stability intervals.

Example 3.2. Construction of reference methods. In order to illustrate the construc-
tion of a reference method for use in step size control, we derive an RK method which
can be used in combination with (3.3) for computing an estimate of the local error.
Consider the method generated by the Butcher array

1/5|1/5
1/31 0 1/3
/210 0 1/2
1 0 0 0 1

’\0 )‘l /\2 )‘3 )t4 s

where the parameters Ao, - - -, A4 are to be determined in such a way that this method
is more accurate than (3.3). Since only one additional right-hand side evaluation is
required when used together with (3.3), it is a good starting point for deriving a
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relatively cheap reference formula. Notice that (3.3) is embedded in the reference
formula. This formula should at least have order p=2, ie., we require

Bl:=A0+A1+A2+/\3+/\4:1’

1 1 1 1
B> '=g)\1 +§/\2+5)\3+/\4=5.
Suppose that we want the method to have dispersion order g = 8. It then follows from
Table 2.1a that, in addition, we should require

1 11 1
=, A A==
As e tehatyre=y,

1 4 1 1

1
= Ayt A= — = A= B ——.
B4 30 3 6 4 105: BS 30A4 B4 30

Solving these equations together with the (p =2)-order conditions yields

1 5 5 3 1
A= —— Ay =— Ay =— =— =,
0 21’ 1 42) 2 14: /\'3 7: /\4 7
The resulting method has the same (algebraic) order p as (3.3), but an increased order
of dispersion ¢. Alternatively, we may require that p=3 and g =6. This is achieved
by replacing the equation B,=4/105 by the equation

LA, =t
25 1 9 2 4 3 4—'3,

to obtain the solution

oD =B U R, LB
o T P o1 Tt s

Example 3.3. A family of third order methods. It was shown in [9, p. 116] that the
method

)Ll A’l
t+1/4 | 1/4 2,
(3.6) Am_s+1/4|1/4 Ames
Amoat1/411/4 0 -+ 0 Aps
2/3 /4 0 --- 0 0 5/12
/4 0 --- 0 0 0 3/4

is third order accurate for all A;,j=1,-- -, m—3, provided that A,,_,=17/60+ O(h).
In terms of the parameters B; we have

e fied),

Bm—l 4)‘2
,\.=ﬂm~j+1<l+._l__) _l’ j=2,3,---,m=2,
T B 474,/ 4

where 8; should satisfy the relation B;=1/6+ O(h) as h 0.
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By means of the dispersion relations the parameters B; can be found and on
substitution the following three methods were constructed:

32/85 | 32/85 p=3, q=6, r=3,
- 8/15 | 1/4 17/60 c=—1/630,
(3. 2/3 | 1/4 0 5/12 (0, B) = (0, 2.66),
| 174 0 0 3/4
128/429 | 128/429
256/495 | 1/4  429/2380 p=3, q=8, r=3,
(38) 8/15 1/4 0 17/60 c=—1/28350,
2/3 1/4 0 0 5/12 (0, B) = (0, 3.38),
| 174 0 0 0 3/4
512/1899 |512/1899
512/1415 1/4  633/5660 p=3,q=10, r=3,
160/357 1/4 0 283/1428 ¢ =—1/2182950,
(39) 8/15 1/4 0 0 17/60 (0, B) = (0,3.99).
2/3 1/4 0 0 0 5/12
1/4 0 0 0 0 3/4

Alternatively, we could have derived the parameters B; by solving the minimax
relations (2.17). For instance, for m =4 we find the method

64B4/(64B3—5) | 64B4/(64B5—5)

1685/5 1/4 (6485 —5)/20
(3.10a) 2/3 1/4 0 5/12
| 1/4 0 0 3/4°

where B3 and B, are defined by
(3.10b) z+3ztan (z) - z;B;— zj tan (z)) By =tan (z;), j=1,2;

here, the z; are given by (2.15) for go=2.

It should be observed that, since the zeros z; depend on h (recall that v = wh, ¥ =
@h), the parameters B; and B, in (3.10a) will also depend on h; hence the RK method
(3.10) changes if h changes. For small h, it is easily shown that

Ll 3+ 0(h%) S W +0(h*
Bs 6 6302122 > 34-30 630(21 z3) (h).

Substitution into (2.3) yields

B(v)= v3[ﬂs-é+(ﬁ4—3io) v2+§(34—{g—5)] +O(h%)
= Sl-aE e v o),

showing that (3.10) has the same orders p =2 and q =6 as (3.7) for a fixed interval of
frequencies [w, @].
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From a practical point of view it is of interest to consider the dispersion ¢ for
fixed (h, w, @) and varying o (recall that (iw)* in (1.2) may be interpreted as an
eigenvalue of the Jacobian matrix of the ODE to be integrated). Thus, we consider
¢ = ¢(v) with fixed v and 7. Choosing ¥ = 0.5 and 7= 1.0, we find that ;~=.16610021
and B,=.03530415. The corresponding dispersion function ¢(») is plotted in Fig. 3.1.
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FIG. 3.1. Behaviour of ¢(v)/v’ for the methods (3.7) (——), (3.10) (-~-) and Bettis’ method (—-—).

In addition, we have plotted the dispersion of (3.7) (B;=1/6, B,=1/30) and of the
four-stage method of Bettis with the coefficients chosen to integrate » =0.75 exactly,
resulting in B;=.16204146 and B,=.04089322. This picture clearly shows that the
“minimax” version (3.10) has a small phase lag if v lies in the interval [0.5, 1.0].
Furthermore, it is obvious that Bettis’ method is rather sensitive to a correct estimate
of the frequency of the solution. Finally, method (3.7) shows the expected order

behavior and its error constant —1/630 is easily recognized.

3.2. Runge-Kutta—Nystrom methods. The examples constructed below will be rep-

L m— m—
£ 7 m= (:u'j)j=11a L=(A; j,1+11=1a
or o A, A=A

As before we give the orders p, g and r, the error constant ¢ in the dispersion expansion,
and the stability or periodicity intervals (0, 8) and [0, 8 ?]. We restrict our considerations
to m=4, p=2,3 and zero-dissipative methods, that is P(z)=1. Additionally, we
constructed several dissipative RKN schemes (ie. P(z)<1 for ze€ (0, 8)). These

resented by the array

(3.11)

schemes can be found in the Appendix.
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Example 3.4. A family of second order methods with zero-dissipation. Following
[10], we consider methods generated by an array of the form

pr | 0
M2 0 Ay
(3.12) Hm—z | O Am-2,m-3
1/2 O 0 )\m—l,m—2
0 0 1/2
0 . 0 1

This family of methods is second order accurate. If we set P(z)=1, then it can be
shown that

1 _Om—j+1 1

W= A Om— 2+ 1) 2m—2j+2)

j=2s"'7m_'1-

It may be of interest to remark that the family (3.12) turns out to have zero
inhomogeneous dispersion [13].

Below we give methods that are, respectively, dispersive of order g =4, 6 and 8,
together with their intervals of periodicity [0, 8°].

1/2 |0 [0, B*1=10, 12]1=[0, (3.46)*],
17210 1/2 ¢=1/720,
(3.13) =2, g=4, r=0o,
0 0 1/2 P 1
0 0 1
1/2 10 [0, B*1=[0, (2.75)%],
1/2 10 1/30 c=-1/40320,
(3.14) 1/2 |0 0 1/12 p=2, q=6, r=00,
0 0 0 1/2
0 0 0 1
1/2 |0
17210 1/56 [0, B*1=[0, (4.63)%],
(3.15) 1/2 {0 0 1/30 ¢=1/3628800,
) /20 0 0 1/12 p=2, q=8, r=co
0 0 0 0 1/2
0 0 0 0 1

As a last member of this family, we mention the method

1/2]0
1/2 0 0'3/0'2
(3.16a) 17210 0 o,
0 0 0 1/2
0 0 0 1
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In'this scheme, which is based on the “parent” method (3.14), 0, and o5 are now
determined by the minimax conditions (2.18), viz.

(3.16b) 0,2} — 0325 =2 cos (z)-2+z;, j=1,2,

where the z; are defined in (2.15). In a similar way as done for the RK method (3.10),
the method (3.16) can be shown to be of algebraic order p =2 and of dispersion order
g=63as h->0 and w and & fixed.

Example 3.5. A third-order method with zero dissipation. By solving numerically
the consistency conditions for third order accuracy under the by-conditions of sixth
order dispersion and P(z)=1, we found the following method:

1926590210660 ‘.429284709246

(317) 421787206165 1048227503064 .040724720578
’ \.233566863436 .107544087262 .1588890449302°
.127854313973 261765691855 .610379994172
where

p=3, g=6, r=0©, c= and [0, 3*]1=[0, (2.75)*].

40320

4. Numerical experiments. In this section we show that the methods derived in
the preceding section on the basis of the test equation (1.5), may also be superior to
conventional methods in nonmodel problems.

4.1. First order equations.
Problem 4.1. Hyperbolic equation:

(4.1) .
u(1,0)=0,  u(0,x)=sin (7°x?).

Discretization of §/3x by symmetric differences at internal grid points and one-
sided differences at the boundary point x =1 yields the system

0 -1
1 0 -1
(4.2) dy/dt=1/2Ax A ¥.
’ 1 0 -1
-1 4 =3

In order to test the capability of the various methods to stay in phase with the
exact solution, we have concentrated on approximating the zeros of the solution y. By
choosing Ax = 1/50, we found that the 20th component of the exact solution vector y
reaches its 500th zero at the point

(4.3) Zs0o=133.509996948 - - - .

Its numerical approximation zsy, was obtained by integrating with fixed step size and
by applying cubic spline interpolation based on 10 neighbouring step points t, = t,+ nh,
where h is the step size in the experiment under consideration. The accuracy of this
approximation, relative to the distribution of the successive zeros on the t-axis, was
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measured by the value of

Zs00— Zs00

sd =—lo
(4.4) g10 Zsor—Zsoo

2

where Zso, denotes the 501st zero of the solution y©*”.

In Table 4.1 the sd-values obtained by the various methods constructed in § 3.1
are listed, together with the results produced by the conventional standard fourth-order
method RK4. The integration steps were chosen such that all results listed in one
column require the same number of right-hand side evaluations.

The results in Table 4.1 clearly demonstrate that the accuracy is mainly determined
by the order of dispersion g and is independent of the algebraic order p.

TABLE 4.1
Relative errors in computing (4.3).

Method rlq h sd h sd h sd
RK4 4/4 1/90 -.37 1/180 1.61 1/270 2.31
(3.3) 2/6 1/90 -.33 1/180 3.30 1/270 4.12
(3.4) 2/8 1/72 -.33 1/144 3.98 1/216 4.41
(3.5) 2/10 1/60 -.33 1/120 3.99 1/180 4.65
(3.7) 3/6 1/90 -.33 1/180 3.30 1/270 4.12
(3.8) 3/8 1/72 -.33 1/144 3.98 1/216 441
(3.9) 3/10 1/60 -.33 1/120 3.99 1/180 4.65

4.2. Second order equations.
Problem 4.2. Wave equation:

u u 1
—=gd S+-A7 =x= =
pYE g (x)ax‘ 4/\ (x,u)u, 0=x=bh =0,
0
(45) 2 ,0)=2%(s,p) =0,
0x ox
. X ou T X
O = —_ —_ = —— _—
u(0, x) sm( b)’ at(O,x) b\/gd cos( b )

Here, d(x) is the depth function given by d =d,[2+cos (27x/b)], g denotes the
acceleration of gravity, and A(x, u) is the coefficient of bottom friction defined by
A = glu|/ C*d with Chezy coefficient C.

By using second-order symmetric differences, this problem was converted into a
system of ODEs and integrated by method (3.13) and, for reasons of comparison, by

the second-order Stormer method (see e.g. [16, p. 260]), a well-known explicit scheme
for the integration of hyperbolic equations.

For the parameters in problem (4.5) we choose

Ax=10, b=100, g=9.81, d,=10, C =50.
Figure 4.1 shows the results for the ninth component of the system of ODEs (i.e.
the one which approximates u(r, x) at x =8Ax =80) in the interval 3567 = t = 3600.
Scheme (3.13) was applied with h=2/3 and Stormer’s method used h = 1/3; hence,
both methods required the same number of right-hand side evaluations on the whole

range of integration. Moreover, we determined a reference solution using scheme (3.14)
with h=1/30.
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1]
!
B
L
LM T T T 1 1 1 1 T 1 T T T 1 T 1 %!
,5?55-5% i%ﬁo.ﬂh 3503.3 3576.67 3580.00 3583.33 3586.67 3580.00 3593.33 3586.67 3600.00
; T-AXIS

-?.50

F1G. 4.1. Reference solution (——) of problem (4.5) and the solutions obtained by the Runge- Kutta-
Nystrom method (3.13) (—-—) and by the Stérmer method (---).

Again, the superiority of the high-order dispersive method (3.13) is clear.
Problem 4.3. Bessel equation:

(135

—=-(100+— tz1
ar’ 100253 )% ’

(4.6)
y(t) =V1tJ,(101).

In order to show that high-order dispersive methods are suitable for long interval
integration, we have applied both the conventional fourth-order Nystrom method,
given by

1/2] 1/8

1 I 0 1/2
I1/6 1/3 0
1/6 2/3 1/6

as well as the methods constructed in § 3.2 on relatively large integration intervals. As
before, all experiments required the same computational effort. The accuracy was
measured by

(4.7) sd(T)=~log ( Jmax - |y(z,) *yn!)

n=1,(T-1)/h

and its value, produced by the various methods, is listed in Table 4.2.
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TABLE 4.2
The maximal absolute error (4.7) for (4.6).

Method [w, &] h m p g r s sd(100) sd(500)  sd(1000) 5d (4000)
Nystrom —_— 1/20 3 4 4 5 4 1.3 i 5 4
(3.13) —_ 1/30 2 2 4 © 2 2.4 1.7 14 8
(3.14) — 120 3 2 6 © 2 29 28 27 23
(3.15) /15 4 2 8 © 2 27 27 27 27
(3.16) [10,101] 1/20 3 2 6 ® 2 29 29 29 29
(3.16) (9,11 1/20 3 2 6 © 2 29 29 2.9 29
(3.17) — 120 3 3 6 © 3 32 3.2 32 25

It turned out that the Nystrom method missed a few zeros when applied on the
intervals [1, 1000] and [1, 4000], whereas the high-order dispersion methods found the
correct number of zeros in all experiments. Moreover, this table clearly shows that the
methods with a relatively low order of dispersion gradually lose accuracy, whereas for
method (3.15), having ¢ =8, and for the minimax method (3.16) the accumulation of
phase errors is not yet visible on these time-intervals.

Problem 4.4. Inhomogeneous equation:

2
%= ~w’y+(0’=1)sin (1), t=0,

(4.8) . .
y(t)=cos (wt) +sin (ot) +sin (1), w>1.

We continue with an experiment on the inhomogeneous equation (4.8), whose
exact solution consists of a rapidly and a slowly oscillating function; the slowly varying
function is due to the inhomogeneous term. The purpose is to show that high-order
dispersive methods are able to integrate this problem with relatively large integration
steps (i.e., wh not small), because the high-order dispersion will take care of the rapidly
oscillating component and the algebraic order, although modest, will take care of the
slowly varying component.

Table 4.3 presents the analogue of Table 4.2 for (4.8).

Again the Nystrom method did not find the correct number of zeros on the intervals
[0, 1000] and [0, 4000]: it missed about 10% and 50% of the zeros on these intervals.
The other methods did find them all. The sd-values as given in Table 4.3, show the
same tendency as was mentioned in the previous example.

Problem 4.5. Orbit equation. Finally, we give an example of a weakly forced
oscillation. In [17], Stiefel and Bettis study a slightly perturbed circular orbit in the

TABLE 4.3
The maximal absolute error (4.7) for (4.8) with w = 10.

Method [, @] h mp g r s sd(100) sd(500)  sd(100) 5d (4000)
Nystrém — 1/20 3 4 4 5 4 6 -1 -3 -3
(3.13) — 1/30 2 2 4 © 2 1.7 9 6 0
(3.14) — /20 3 2 6 o 2 1.7 1.6 1.6 14
(3.15) — 1/15 4 2 8 o 2 14 1.4 1.4 14
(3.16) [9.9,10.1] /20 3 2 6 o 2 1.7 1.7 1.7 17
(3.16) [9,11] 1/20 3 2 6 o 2 1.7 1.7 1.7 1.7
(3.17) — 1/20 3 3 6 o 3 2.7 2.7 24 1.7
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complex plane, described by

(4.9) i(t)+z(t)=¢e", zeC, z(0)=1, Z(0)=(1-3¢)i,
whose exact solution is given by

(4.10) z(t) = u(t)+iv(t) =[cos (t)+3et sin (t)]+ i[sin () —3&t cos (£)].

As this example is intended to illustrate the influence of a small inhomogeneous
solution component, rather than to show the long term behaviour, we now integrate
on a fixed time interval (0=t =407) and we list, for a few values of &, the accuracies
of u, v and z, respectively, defined by

Sdu(h) = _10810 Iun - u(tn)la
(411) de(h) = "10g10 |U,, - I)(t,,)‘,
SdZ(h) = _loglo |Zn - Z(tn)la

with t, =407 In Table 4.4 the accuracies obtained are given for two values of h,
together with the effective orders of accuracy defined by

_ sd(h/2)~sd(h)zsd(h/Z)—sd(h)

4.12 k
(4.12) P 0g, (2) 3

For £ =0, (4.9) reduces to the model problem so that the analysis should rigorously
apply. Since the point ¢, =407 is a zero of the component v(z) we expect that sdv
presents a reasonable estimate of the phase error of v and should therefore be governed
by the homogeneous dispersion orders g and s. In Table 4.4 the sdv values show the
order g of propagated dispersion reasonably well; apparently, the initial dispersion
does not affect the order of accuracy of v. The accuracy of the u-component is relatively
high, so that the total solution z = u+iv exhibits the homogeneous propagated order
of dispersion.

For £ =107%, (4.9) becomes a slightly perturbed model problem. The results in
Table 4.4 show hardly any difference from the case £ =0. Thus, we conclude that the
behaviour of the numerical solution is still mainly determined by the homogeneous
components.

For £ =107>, Table 4.4 indicates a considerable loss of accuracy for methods
(3.14)-(3.17). The inhomogeneous perturbation now introduces a significant
inhomogeneous solution component, so that the numerical error does not only consist
of errors of homogeneous origin, but also of errors of inhomogeneous origin, i.e.,
inhomogeneous dispersion and dissipation errors. Therefore, for all methods, except
for Nystrém’s method, a drop in accuracy is to be expected because they are designed
to damp homogeneous errors in the first place (recall, however, that methods (3.13)-
(3.16) which belong to the family (3.12), introduce inhomogeneous dissipation, but
no inhomogeneous dispersion).

Finally, we conclude from Table 4.4 that the high-order dispersion methods are

superior to the conventional Nystrom method irrespective of whether they show their
(homogeneous) dispersion order or not.

Appendix.

Al." Additional methods. In the course of this investigation of Runge-Kutta
(-Nystrom) methods, we constructed many other methods. A few of them are listed
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in this appendix, because they might become of interest in our future research in this
area. They are all of Runge-Kutta-Nystrom type, they are dissipative, and they have
an increased order of dispersion.

A family of second-order, dissipative methods. We again consider methods gener-
ated by an array of the form (3.11), but now we exploit the polynomial P(z) in order
to increase the order of dispersion. By solving the dispersion relations listed in Table
2.2a we find the optimal parameters o; and ;. The Runge~-Kutta- Nystrdm parameters,
expressed in terms of o;, are then given by (cf. [10])

_l Ot Tn—j _Om—j+1 7 Tm—j+1

A = = Jj=1,m=1,

My =
20m = Tm-j Om—j ™ Tm~j

where o, =1 and o,,= 7, = 7, =0.
In the special cases given below we have added the stability interval (0, 8), that
is, the interval 0< v <8 where |d.(v)|< 1.

13/30 | 0
(AL1) 1/2 'O 1/12 p=2, q=6, r=3,
0 0 1/2 (0,8)=(0,v12)=(0,3.46),
0 0 1
266830712 | 0
.065635306 | 0 —.183849014 p=2, q=10, r=3,
(A1.2) 1/2 0 0 1/12 (0, B) = (0, 2.40).
lo 0 0 1/2
0 0 0 1
Here,

oy=1, 0,=.04713627554, o0;=—.01174842249,
m=0, m=-.03619705780, m;=.00357232863.

Some higher order methods. Our starting point for the construction of third- and
fourth-order methods is a full parameter matrix with m =3 and 4, respectively. In
order to achieve an order of dispersion as high as possible we only consider the case
where P(z) # 1. We no longer follow the analytical approach, as was possible in § 3.2,
but we formulate a minimization problem for a nonlinear least-squares problem of the
form

G = [&(M7T,

in which A denotes the vector of all RKN parameters and g; stands for the consistency
and dispersion relations. Moreover, we added to this system an extra g-function of
the form g(A)= W/B(A), where B denotes the stability boundary and W is some
weight. For the minimization of G(A) we used the NAG-routine EO4FCF. We found
the following three-stage third-order RKN schemes:

4969003529 | .1234549803
(A1.3) 7337223214 ‘ .1504173630 .1187568595
2260389606 .1450231299 .1289379095
} 2265821428 .2849142164 .4885036408
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which is of dispersion order g =8, of dissipation order r=3 and has 8 =4.56, and

.4955018983 | .1227610656
7166211542 | .1493614124 1074115269
(AL4) \ 2280103951 .1277448126 .1442447923°
2319401058 .2279673366 .5400925576
which has g=10, r=3 and g =3.12.
The least-squares approach allows us to impose more (dispersion) relations than

the number of free parameters. In this way we found a scheme which is effectively of
order q =12, r=3, that is the “‘residuals” g; are sufficiently small. This scheme reads

.4940895709 | .1220622521
7075002625 | .1489112009 .1013671098
(AL5) 1 2296630303 .1152557560 .1550812137

2348807666 .1936269363 .5714922971

The interval of stability is given by (0, 3.07).
Proceeding in the same way, fourth-order schemes were constructed. As an
example, we give a scheme which has ¢ =10 and r=35:

(Al.6)

0551594317 0015212815
.6683701446 | —1.1732016116  1.3965609367
.3632109628 1.5887403855 —1.7263289145 .2035496308

4046440250 —.3464696799  .0829134999 3589121550
—1.8067389251  2.6410990864 9639436971  —.7983038584

Its stability interval is (0, 3.59).

A2. Coeflicients of the stability polynomials. As it may be convenient for the reader
to have available the coefficients of the stability polynomials in terms of the parameters
of the RK(N) method, we give some of these coefficients.

Runge-Kutta methods. The first few parameters B; as defined in (2.8) are given by

me1 -1 m=1  j-1 -
B = '21 Am,j tz—:o/\j’l’ Bs= X Amy T A X A
(A21) Jj = j=2 I=1 i=0
m=1 j=1 1-1 i-1
Ba= Y Amj X Au T A T Ay, ete.
j=3 =2 7=t ko

Runge—Kutta—Nystri)'m methods. The coefficients o; and a;, occurring in the
polynomials S(z) and P(z) (cf. (2.11) and (2.14)), can easily be deduced from the

coefficients of the polynomials A,,(z), B,.(z), A%(z) and B¥%(z) (see also (2.7)). We
calculated a few terms of these polynomials:

m-1 m-—1 -1
A,,,(z)=1+z Z /\m,l+22 Z ,\m’[ Z Ae+e-e,
1=0 I=1 k=0

m—1 m-1 -1
Bm(z)= 1+z lz Am,l)u’l'i-z2 Z A-m,l Z /\I,k/“k+' T
(A22) =1 1=2 k=1

" m-—1 m—1 -1
An(z)=z L AM+22 T AL T At e,
=0 =1 k=0
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m—1 2 m-—1 -1
Bi(z)=1+2z T Mm+2> ¥ A} T A+ -
=1 =2 k=1
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